skip to main content


Search for: All records

Creators/Authors contains: "Bardeen, Charles"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Atmospheric soot loadings from nuclear weapon detonation would cause disruptions to the Earth’s climate, limiting terrestrial and aquatic food production. Here, we use climate, crop and fishery models to estimate the impacts arising from six scenarios of stratospheric soot injection, predicting the total food calories available in each nation post-war after stored food is consumed. In quantifying impacts away from target areas, we demonstrate that soot injections larger than 5 Tg would lead to mass food shortages, and livestock and aquatic food production would be unable to compensate for reduced crop output, in almost all countries. Adaptation measures such as food waste reduction would have limited impact on increasing available calories. We estimate more than 2 billion people could die from nuclear war between India and Pakistan, and more than 5 billion could die from a war between the United States and Russia—underlining the importance of global cooperation in preventing nuclear war. 
    more » « less
  2. Abstract. Simulating the complex aerosol microphysical processes in a comprehensive Earth system model can be very computationally intensive; therefore many models utilize a modal approach, where aerosol size distributions are represented by observation-derived lognormal functions, and internal mixing between different aerosol species within an aerosol mode is often assumed. This approach has been shown to yield satisfactory results across a large array of applications, but there may be cases where the simplification in this approach may produce some shortcomings. In this work we show specific conditions under which the current approximations used in some modal approaches might yield incorrect answers. Using results from the Community Earth System Model v1 (CESM1) Geoengineering Large Ensemble (GLENS) project, we analyze the effects in the troposphere of a continuous increasing load of sulfate aerosols in the stratosphere, with the aim of counteracting the surface warming produced by non-mitigated increasing greenhouse gas (GHG) concentrations between 2020–2100. We show that the simulated results pertaining to the evolution of sea salt and dust aerosols in the upper troposphere are not realistic due to internal mixing assumptions in the modal aerosol treatment, which in this case reduces the size, and thus the settling velocities, of those particles and ultimately changes their mixing ratio below the tropopause. The unnatural increase of these aerosol species affects, in turn, the simulation of upper tropospheric ice formation, resulting in an increase in ice clouds that is not due to any meaningful physical mechanisms. While we show that this does not significantly affect the overall results of the simulations, we point to some areas where results should be interpreted with care in modeling simulations using similar approximations: in particular, in the evolution of upper tropospheric clouds when large amounts of sulfate are present in the stratosphere, as after a large explosive volcanic eruption or in similar stratospheric aerosol injection cases. Finally, we suggest that this can be avoided if sulfate aerosols in the coarse mode, the predominant species in these situations, are treated separately from other aerosol species in the model. 
    more » « less
  3. Massive Australian wildfires lofted smoke directly into the stratosphere in the austral summer of 2019/20. The smoke led to increases in optical extinction throughout the midlatitudes of the southern hemisphere that rivalled substantial volcanic perturbations. Previous studies have assumed that the smoke became coated with sulfuric acid and water and would deplete the ozone layer through heterogeneous chemistry on those surfaces, as is routinely observed following volcanic enhancements of the stratospheric sulfate layer. Here, observations of extinction and reactive nitrogen species from multiple independent satellites that sampled the smoke region are compared to one another and to model calculations. The data display a strong decrease in reactive nitrogen concentrations with increased aerosol extinction in the stratosphere, which is a known fingerprint for key heterogeneous chemistry on sulfate/H 2 O particles (specifically the hydrolysis of N 2 O 5 to form HNO 3 ). This chemical shift affects not only reactive nitrogen but also chlorine and reactive hydrogen species and is expected to cause midlatitude ozone layer depletion. Comparison of the model ozone to observations suggests that N 2 O 5 hydrolysis contributed to reduced ozone, but additional chemical and/or dynamical processes are also important. These findings suggest that if wildfire smoke injection into the stratosphere increases sufficiently in frequency and magnitude as the world warms due to climate change, ozone recovery under the Montreal Protocol could be impeded, at least sporadically. Modeled austral midlatitude total ozone loss was about 1% in March 2020, which is significant compared to expected ozone recovery of about 1% per decade. 
    more » « less
  4. The Toba eruption ∼74,000 y ago was the largest volcanic eruption since the start of the Pleistocene and represents an important test case for understanding the effects of large explosive eruptions on climate and ecosystems. However, the magnitude and repercussions of climatic changes driven by the eruption are strongly debated. High-resolution paleoclimate and archaeological records from Africa find little evidence for the disruption of climate or human activity in the wake of the eruption in contrast with a controversial link with a bottleneck in human evolution and climate model simulations predicting strong volcanic cooling for up to a decade after a Toba-scale eruption. Here, we use a large ensemble of high-resolution Community Earth System Model (CESM1.3) simulations to reconcile climate model predictions with paleoclimate records, accounting for uncertainties in the magnitude of Toba sulfur emissions with high and low emission scenarios. We find a near-zero probability of annual mean surface temperature anomalies exceeding 4 °C in most of Africa in contrast with near 100% probabilities of cooling this severe in Asia and North America for the high sulfur emission case. The likelihood of strong decreases in precipitation is low in most of Africa. Therefore, even Toba sulfur release at the upper range of plausible estimates remains consistent with the muted response in Africa indicated by paleoclimate proxies. Our results provide a probabilistic view of the uneven patterns of volcanic climate disruption during a crucial interval in human evolution, with implications for understanding the range of environmental impacts from past and future supereruptions.

     
    more » « less
  5. A limited nuclear war between India and Pakistan could ignite fires large enough to emit more than 5 Tg of soot into the stratosphere. Climate model simulations have shown severe resulting climate perturbations with declines in global mean temperature by 1.8 °C and precipitation by 8%, for at least 5 y. Here we evaluate impacts for the global food system. Six harmonized state-of-the-art crop models show that global caloric production from maize, wheat, rice, and soybean falls by 13 (±1)%, 11 (±8)%, 3 (±5)%, and 17 (±2)% over 5 y. Total single-year losses of 12 (±4)% quadruple the largest observed historical anomaly and exceed impacts caused by historic droughts and volcanic eruptions. Colder temperatures drive losses more than changes in precipitation and solar radiation, leading to strongest impacts in temperate regions poleward of 30°N, including the United States, Europe, and China for 10 to 15 y. Integrated food trade network analyses show that domestic reserves and global trade can largely buffer the production anomaly in the first year. Persistent multiyear losses, however, would constrain domestic food availability and propagate to the Global South, especially to food-insecure countries. By year 5, maize and wheat availability would decrease by 13% globally and by more than 20% in 71 countries with a cumulative population of 1.3 billion people. In view of increasing instability in South Asia, this study shows that a regional conflict using <1% of the worldwide nuclear arsenal could have adverse consequences for global food security unmatched in modern history. 
    more » « less
  6. Abstract

    Southern Ocean (SO) low‐level mixed phase clouds have been a long‐standing challenge for Earth system models to accurately represent. While improvements to the Community Earth System Model version 2 (CESM2) resulted in increased supercooled liquid in SO clouds and improved model radiative biases, simulated SO clouds in CESM2 now contain too little ice. Previous observational studies have indicated that marine particles are major contributor to SO low‐level cloud heterogeneous ice nucleation, a process that initiates a number of cloud processes that govern cloud radiative properties. In this study, we utilize detailed aerosol and ice nucleating particle (INP) measurements from two recent measurement campaigns to assess simulated aerosol abundance, number size distributions, and composition and INP parameterizations for use in CESM2. Our results indicate that CESM2 has a positive bias in simulated surface‐level total aerosol surface area at latitudes north of 58°S. Measured INP populations were dominated by marine INPs and we present evidence of refractory INPs present over the SO assumed here to be mineral dust INPs. Results highlight a critical need to assess simulated mineral dust number and size distributions in CESM2 in order to adequately represent SO INP populations and their response to long‐term changes in atmospheric transport patterns and land use change. We also discuss important cautions and limitations in applying a commonly used mineral dust INP parameterization to remote regions like the pristine SO.

     
    more » « less
  7. Abstract

    Large areal fires, such as those ignited following a nuclear detonation, can inject smoke into the upper troposphere and lower stratosphere. Detailed fire simulations allow for assessment of how local weather interacts with these fires and affects smoke lofting. In this study, we employ the fire simulation package in the Weather Research and Forecasting (WRF‐Fire) model, Version 4.0.1, to explore how smoke lofting from a fire burning a homogeneous fuel bed changes with varying local winds, relative humidity, and atmospheric boundary‐layer stability for two different‐sized areal fires. The presence of moisture has the greatest influence on the results by raising the altitude of lofting, while faster wind speeds dampen lofting and lower the injection height. Stably stratified conditions inhibit plume propagation compared with neutrally stratified conditions, although the impact of stability is not as strong as that of moisture and winds. These findings highlight the importance of using an appropriate atmospheric profile when simulating large fires, as the local weather can have a meaningful influence on smoke lofting.

     
    more » « less
  8. Abstract

    Controls on pristine aerosol over the Southern Ocean (SO) are critical for constraining the strength of global aerosol indirect forcing. Observations of summertime SO clouds and aerosols in synoptically varied conditions during the 2018 SOCRATES aircraft campaign reveal novel mechanisms influencing pristine aerosol‐cloud interactions. The SO free troposphere (3–6 km) is characterized by widespread, frequent new particle formation events contributing to much larger concentrations (≥1,000 mg−1) of condensation nuclei (diameters > 0.01 μm) than in typical sub‐tropical regions. Synoptic‐scale uplift in warm conveyor belts and sub‐polar vortices lifts marine biogenic sulfur‐containing gases to free‐tropospheric environments favorable for generating Aitken‐mode aerosol particles (0.01–0.1 μm). Free‐tropospheric Aitken particles subside into the boundary layer, where they grow in size to dominate the sulfur‐based cloud condensation nuclei (CCN) driving SO cloud droplet number concentrations (Nd ∼ 60–100 cm−3). Evidence is presented for a hypothesized Aitkenbuffering mechanism which maintains persistently high summertime SONdagainst precipitation removal through CCN replenishment from activation and growth of boundary layer Aitken particles. Nudged hindcasts from the Community Atmosphere Model (CAM6) are found to underpredict Aitken and accumulation mode aerosols andNd, impacting summertime cloud brightness and aerosol‐cloud interactions and indicating incomplete representations of aerosol mechanisms associated with ocean biology.

     
    more » « less